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We report converged full-dimensional quantum dynamical calculations of the vibrational relaxation in the
collision: H2 (V1 ) 1, j1 ) 0,1) + H2 (V2 ) 0, j2 ) 0,1) f H2 (V′1 ) 0, j ′1) + H2 (V′2 ) 0, j ′2), employing
a recent global potential energy surface fitted to a large number of high-level ab initio points. The scattering
dynamics is characterized by a time-independent wave packet approach based on the Chebyshev polynomial
expansion of Green’s operator, which requires repetitive calculations of the action of the system Hamiltonian
onto the propagating wave packet. The full-dimensional Hamiltonian within the coupled-states approximation
is discretized in a mixed grid/basis representation with the adaptation of the parity and diatomic exchange
symmetry, and its action is efficiently computed in the appropriate representation facilitated by a series of
one-dimensional pseudospectral transformations. Scattering involving bothp- and o-H2 are studied. Rate
constants up to a high temperature (3500 K) are obtained from S-matrix elements and compared with available
experimental measurements as well as with previous theoretical results.

I. Introduction

As the most abundant molecule in the universe, the hydrogen
molecule plays an important role in many areas of astrophysics
and astrochemistry. For example, collision-induced energy
transfer between H2 molecules and between H2 and other atoms/
molecules is believed to be closely related to various astrophysi-
cal phenomena, such as cooling of primordial gas and shock
wave-induced heating in interstellar media.1-3 To accurately
model the thermal balance and kinetics of such systems, state-
to-state rate constants become highly desirable.4 Experimentally,
it is rather difficult to measure such quantum-state resolved
quantities in these systems, and only a limited set of data
exists.5-10 On the other hand, accurate theoretical data require
both a reliable potential energy surface (PES) and accurate
dynamical treatment of the scattering event.

The calculation of the electronic energy of the H2 + H2

system is considered to be straightforward as it contains a small
number of electrons and is amenable to high-level ab initio
methods with a large basis set. However, it is only recently
that such calculations have been carried out on a sufficiently
large scale to cover the relevant configuration space.11-13

Analytical fits of these ab initio points have since been
developed by Aguado, Suarez, and Paniagua (ASP)14 and by
Boothroyd, Martin, Keogh, and Peterson (BMKP).13 The BMKP
PES is much more reliable than previous versions as a large
number (48 180) of MRD-CI points were used in the fitting of
the global potential energy function and it has an estimated
uncertainty less than 1 kcal/mol. Hence, this PES provides a
valuable testing ground for dynamical models.

Dynamical studies of the H2 + H2 system have been rather
extensive. Classical15 and semiclassical treatments16-19 of the
H2 + H2 collision have been reported, but there is always the
risk of missing out on important quantum effects in this simplest
diatom-diatom system. The quantum mechanical framework

for characterizing collisional dynamics between two diatomic
molecules is well-established.20-26 However, earlier applications
to the H2 + H2 system have resorted to various approximations,
such as the distorted wave,20,27rigid-rotor,20,22,24,26-28 effective
potential,23 and two-state approximations,1,22 as well as asym-
metric treatments of the two colliding hydrogen molecules.29-33

Although these approximations appear to be reasonable, little
has been done until recently to verify their validity by
performing exact full-dimensional calculations. The lack of full-
dimensional dynamic studies can probably be attributed to the
involvement of six internal degrees of freedom, which represents
a significant numerical challenge.

Moreover, many previous dynamical studies of this system
have used empirical21,23or low-quality ab initio PESs.34-36 The
uncertainties arising from both the dynamical approximations
and the inaccurate PES make it difficult for a rigorous
comparison with the experimental data or an unambiguous
evaluation of the validity of either the PES or the dynamical
method used in the calculation.

The recent emergence of high-quality global PESs of the H4

system has stimulated some interests in dynamical calculations
by quantum mechanical methods with as few approximations
as possible. This is important not only for checking the validity
of the PES used in the calculation but also for establishing an
accurate benchmark for more approximate dynamical models.
To this end, Pogrebnya and Clary37 reported extensive full-
dimensional close-coupling (CC) calculations of rovibrational
inelastic collisions betweenp-H2 molecules as well as between
o-H2 molecules employing the BMKP PES. The calculated rate
constants over the 20∼300 K temperature range were found to
overestimate experimental measurements. They attributed this
disagreement to the strong anisotropy of the BMKP PES and
modified the PES to lower the anisotropy. This modification
was shown to improve the agreement between theory and
experiment. In the meantime, our group has studied the pure
rotational38 as well as rovibrational inelasticity39 induced by
collisions between twop-H2 molecules by using a time-† Part of the special issue “Donald J. Kouri Festschrift”.
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independent quantum wave packet approach, also with full
dimensionality. Rate constants over a wide range of temperatures
(0∼3500 K) were calculated. The trend of our results is in
qualitative agreement with experimental measurements and the
agreement improves at high temperatures (g500 K). However,
significant disagreement was found at low temperatures where
the theoretical results significantly overestimate experimental
measurements. This observation is consistent with the conclusion
of Pogrebnya and Clary.37

In this contribution, we extend our previous studies of the
para-paraH2 collision to include bothortho-orthoandortho-
para collisions. In particular, we include scatterings with
nonzeroΩ, which were avoided in our earlier work on the
para-para H2 collision. The discretization scheme thus needs
to be modified to accommodate the change. But otherwise, the
dynamical methods used here are quite similar to our earlier
work. The calculations yield transition probabilities and cross-
sections up to a high energy (2.2 eV), which allow the
calculation of rate constants up to a rather high temperature
(3500 K). This paper is organized as follows. In Section II, the
discretization scheme and time-independent Chebyshev wave
packet method are briefly reviewed in the context of diatom-
diatom collisions. In Section III, results from the dynamical
calculations are presented and discussed. A short summary is
given in Section IV.

II. Theory

A. Discretization and Evaluation of Ĥψ. For the molecular
system studied here, it is convenient to use the diatom-diatom
Jacobi coordinates (r0, r1, r2, θ1, θ2, andφ). Here, the first three
radial coordinates denote the intermolecular and diatomic
internuclear distances. The Jacobi angles (θ1 andθ2) are defined
between the diatomic and the intermolecular vectors, whileφ

is the dihedral angle. The Hamiltonian in these coordinates can
be written as below (p ) 1):40

whereµ0, µ1, andµ2 are the appropriate reduced masses,Ĵ and
ĵ i are respectively angular momentum operators corresponding
to the overall and diatomic rotations,V is the PES of the system,
and Vi(ri) (i ) 1, 2) is the potential energy function of free
diatomic molecules. The vibrational reference Hamiltoniansĥi

are given by

As shown below, the major numerical task in propagating
the wave packet is the evaluation of the action of the Hamil-
tonian on to the propagation state, namely,Ĥψ. This is done in
a mixed grid/basis representation that minimizes the dimen-
sionality of the wave function and renders efficient computation
of Ĥψ. In particular, we choose the body-fixed (BF) frame with
the intermolecular vector (rb0) as the referencez-axis. This is
convenient as projections of both the total angular momentum

(Ĵ) and ĵ12 ) ĵ1 + ĵ2 are given byΩ. The total wave packet is
expanded to a parity-adapted basis:

where the total angular momentum (J), its projection onto the
space-fixed (SF)z-axis (M), and the parity (p ) (1) are all
good quantum numbers,j1 andj2 are rotational quantum numbers
of the diatoms, andm is the projection of rotational angular
momentumj1 onto the BFz-axis. As there is no external field,
the quantum numberM can be arbitrarily chosen. Thus, we
assumeM ) 0 and drop it from subsequent equations for
simplicity. Our choice is equivalent to the E2 frame discussed
by Gatti et al.41,42 The discretization strategy is similar to the
recent work of Goldfield and Gray,43 although differences exist
in implementation.

The treatment of the three radial coordinates is straight-
forward. As shown above, the radial basis is given in a three-
dimensional direct product grid representation, indexed byi0i1i2.
The action of the first radial kinetic energy operator (KEO) in
eq 1 is evaluated by fast (sine) Fourier transform on an
equidistant grid.44 The two vibrational reference Hamiltonians
in eq 2 are represented on potential-optimized discrete variable
representation (PODVR) grids.45,46 The use of PODVR mini-
mizes the grid size and improves computational efficiency.
Partial sum is used to achieve quasi-linear scaling in the matrix-
vector multiplication.

In contrast to the radial degrees of freedom, the angular part
is complicated and deserves a more thorough discussion. The
parity-adapted angular basis used in the expansion in eq 3 is
given below:

where the quantum numberΩ is restricted to nonnegative values
to avoid linear dependency, and in the case ofΩ ) 0, m is
nonnegative. The basis for the overall rotation is the Wigner
rotational matrix (DΩ,M

J ) defined in terms of the Euler angles
(R, â, γ):47

The internal angular basis is, on the other hand, given as a
product of uncoupled spherical harmonics:

whereΘjm(θ) are normalized associated Legendre functions with
the Condon-Shortley phase convention.48 Note that this is not
a direct product basis. The use of uncoupled angular basis
|j1j2mΩ:Jp〉, instead of the conventional coupled one
|j1j2j12Ω:Jp〉,25,49 is because of the pseudospectral transforms
used in calculating the action of PES to the wave packet, as
discussed below. These two bases can be readily interconverted.

In the angular finite basis representation (FBR) outlined
above, the matrix of KEOs is very sparse, albeit not diagonal.
In particular, the first two angular KEOs in eq 1 are diagonal
with the following matrix elements:

Ĥ ) -
1

2µ0

∂
2

∂r0
2

+ ∑
i)1

2

ĥi + ∑
i)1

2 j i
2

2µiri
2

+
(Ĵ - ĵ1 - ĵ2)

2

2µ0r0
2

+

V(r0, r1, r2, θ1, θ2, φ) - ∑
i)1

2

Vi(ri) (1)

ĥi ) - 1
2µi

∂
2

∂ri
2

+ Vi(ri) (i ) 1, 2) (2)

ΨJp ) ∑
i0i1i2j1j2mΩ

ψi0i1i2j1j2mΩ
Jp |i0〉|i1〉|i2〉|j1j2mΩ:JMp〉 (3)

|j1j2mΩ:Jp〉 ) (2 + 2δΩ,0δm,0)
-1/2 × [|JΩ〉|j1mj2Ω - m〉 +

p(-1)J|J - Ω〉|j1 - mj2 - Ω + m〉] (4)

|JΩ〉 ) x2J + 1

8π2
DΩ,0

J* (R, â, γ) (5)

|j1mj2Ω - m〉 ) Θj1m
(θ1)Θj2Ω-m(θ2)x(1/2π) exp(imφ) (6)

〈j1′j2′m′Ω′:Jp|ĵ i
2|j1j2mΩ:Jp〉 ) j i(j i + 1)δj1′,j1

δj2′,j2
δm′,mδΩ′,Ω

(7)
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For convenience, the third angular KEO is broken into four
parts:

where

The matrix elements of these operators are given as eq 9a-d
(below), whereλj,m

( ) [j(j + 1) - m(m ( 1)]1/2. Similar
expressions have been derived before by Gatti et al.42 and by
Goldfield and Gray.43 However, neither provided explicit matrix
elements for a parity-adapted basis. Our results also differ from
those of Goldfield and Gray by a phase factor due to the
Condon-Shortley convention used in this work. Because of the
restrictionΩ, Ω′ g 0, the terms associated withp(-1)J in eq 9
survive only for special values ofΩ andΩ′ (for example,Ω )
Ω′ ) 0 in eq 9b). Despite the formidable appearance of these
matrix elements, the action of KEOs on to the wave packet is
quite easy to evaluate.

In this work, we impose the coupled-state (CS) approxima-
tion, which ignores the Coriolis coupling between different
Ω channels.50,51 The CS approximation rendersΩ a good
quantum number and neglects the off-diagonal Coriolis terms
in eq 9c,d. Previous experience has indicated that the CS
approximation is a reasonable one when applied to the H2 +
H2 system.26

Finally, we discuss the calculation of the action of the
potential operator on to the wave packet. It can be shown that
at a given radial grid point labeled byi0i1i2, the potential matrix
element has the form of eq 10 (below), where

As the potential matrix depends parametrically on three radial
indices, a large amount of memory is required to store the matrix
elements. This problem can be efficiently circumvented by the
pseudospectral method: the wave packet (ψj1j2m

i0i1i2Ω) originally in
the angular FBR is transformed to the grid representation
(ψR1R2â

i0i1i2Ω) by three sequential transformations indicated by the

forward direction in the following equation:

where R1, R2, and â respectively denote the indices of the
angular grids in theθ1, θ2, andφ coordinates. The transformation
matrixes are defined as

wherenθ andnφ are the numbers of grid points in the polar and
dihedral angles, respectively;φâ ) (â - 1/2)π/nφ, andθR and
wR are respectively the abscissas and weights of the Gauss-
Legendre quadrature.52 The transformed wave packet in the
direct product grid is then multiplied by the diagonal potential
matrix. After that, the resulting wave packet is transformed back
to the original FBR by three sequential transformations in the
backward direction in eq 11. The above pseudospectral trans-
form strategy for the angular coordinates can be traced back to
earlier work by several authors43,53-55 including us.56,57

Due to different nuclear spins, H2 molecules exist in either
thepara or ortho forms, which are practically noninterconvert-
able by collisions. To maintain total symmetry,p-H2 can only
populate evenj states, whileo-H2 can only populate oddj states.
For para-para or ortho-ortho collisions, one can further
simplify the calculation by adapting the diatomic exchange
symmetry that recognizes the indistinguishability of the H2

molecules.20,21,23-25 As discussed in detail earlier,57 the existence
of such symmetry renders nearly half of the grid redundant.
Consequently, one only needs to store the wave function at a
grid point (i0, i1, i2, j1, j2, m) for i1 g i2. When needed, values
at other grid points can be generated by a simple mapping:

wherex ) (1. In this scheme, it is the wave function, rather
than the Hamiltonian matrix, that is symmetrized, which
simplifies the coding. Since the exchange and parity operators
commute, there are four symmetry species for these H4 systems.
For collisions betweenp- ando-H2, however, the H2 molecules
should be treated as distinguishable moieties with no exchange
symmetry.

〈j1′j2′m′Ω′:Jp|Ôd|j1j2mΩ:Jp〉 ) [J(J + 1) + j1(j1 + 1) + j2(j2 + 1) - 2Ω2 + 2m(Ω - m)]δj1′,j1
δj2′,j2

δm′,mδΩ′,Ω (9a)

〈j1′j2′m′Ω′:Jp|Ô12|j1j2mΩ:Jp〉 ) [(1 + δΩ′,0δm′,0)(1 + δΩ,0δm,0)]
-1/2 [λj1,m

+ λj2,Ω-m
- δj1′,j1

δj2′,j2
(δm′,m+1δΩ′,Ω +

p(-1)Jδ-m′,m+1δ-Ω′,Ω) + λj1,m
- λj2,Ω-m

+ δj1′,j1
δj2′,j2

(δm′,m-1δΩ′,Ω + p(-1)Jδ-m′,m-1δ-Ω′,Ω)] (9b)

〈j1′j2′m′Ω′:Jp|Ô1|j1j2mΩ:Jp〉 ) -[(1 + δΩ′,0δm′,0)(1 + δΩ,0δm,0)]
-1/2 [λJ,Ω

- λj1,m
- δj1′,j1

δj2′,j2
(δm′,m-1δΩ′,Ω-1 +

p(-1)Jδ-m′,m-1δ-Ω′,Ω-1) + λJ,K
+ λj1,m

+ δj1′,j1
δj2′,j2

(δm′,m+1δΩ′,Ω+1 + p(-1)Jδ-m′,m+1δ-Ω′,Ω+1)] (9c)

〈j1′j2′m′Ω′:Jp|Ô2|j1j2mΩ:Jp〉 ) -[(1 + δΩ′,0δm′,0)(1 + δΩ,0δm,0)]
-1/2 × [λJ,Ω

- λj2,Ω-m
- δj1′,j1

δj2′,j2
(δm′,mδΩ′,Ω-1 +

p(-1)Jδ-m′,mδ-Ω′,Ω-1) + λJ,K
+ λj2,Ω-m

+ δj1′,j1
δj2′,j2

(δm′,mδΩ′,Ω+1 + p(-1)Jδ-m′,mδ-Ω′,Ω+1)] (9d)

〈j1′j2′m′Ω′:Jp|Vi0i1i2
|j1j2mΩ:Jp〉 ) [ (1 + δm′,0)(1 + δm,0)

(1 + δΩ′,0δm′,0)(1 + δΩ,0δm,0)]
1/2

∑
l)1

2

{[δΩ′,Ω +

p(-1)J+l δ-Ω′,Ω]/2〈Θj1′,m′(θ1)Θj2′,Ω′-m′(θ2)Φm′
(l)(φ)|Vi0i1i2

|Θj1,m
(θ1)Θj2,Ω-m(θ2)Φm

(l)(φ)〉} (10)

ψj1j2m
i0i1i2Ω 798

L(θ1:m)
ψR1j2m

i0i1i2Ω 798
L(θ2:Ω - m)

ψR1R2m
i0i1i2Ω 798

L(φ)
ψR1R2â

i0i1i2Ω (11)

LR,j(θ:m) ) xwRΘj,m(θR) j ) |m|, ..., jmax;
R ) 1, ...,nθ (12a)

Lâ,m(φ) ) x1/nφΦm(φâ) â ) 1, ...,nφ (12b)

ψi0,i2,i1,j2,j1,m
x ) xψi0,i1,i2,j1,j2,m

x (13)

(Ĵ - ĵ1 - ĵ2)
2 ) Ôd + Ô12 + Ô1 + Ô2 (8a)

Ôd ) Ĵ2 + ĵ1
2 + ĵ2

2 - 2Ĵz(ĵ1z + ĵ2z) + 2ĵ1zĵ2z (8b)

Ô12 ) ĵ1+ĵ2- + ĵ1-ĵ2+ (8c)

Ôi ) -Ĵ+ĵ i- - Ĵ-ĵ i+ i ) 1, 2 (8d)

Φm
(l)(φ) ) [π(1 + δm,0)]

-1/2 × {sin (mφ) (l ) 1)
cos(mφ) (l = 2)
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B. S-Matrix and Chebyshev Propagation.In this work, we
follow the correlation function formulation proposed indepen-
dently by Tannor and Weeks58 and by Kouri et al.59 in
calculating the S-matrix elements. To this end, the S-matrix
element for a transition from initial (i) to final (f) state at energy
E is given as

where the initial (final) state wave packet|øi〉(|øf〉) is normally
expressed as a product of an internal state (i, f) eigenfunction
and a translational wave packet localized in the asymptotic
region. The energy amplitudea(E) ) 〈E|ø〉 depends on the
choice of the translational wave packet and can be readily
evaluated.

The major numerical task in eq 14 is to calculate the action
of Green’s operatorG+(E) ) (E - Ĥ)-1 on to the initial wave
packet. A common approach is to expand the operator in terms
of the time propagator.58 Alternatively, a Chebyshev polynomial
expansion ofG+ can be used.60-64 As discussed in our earlier
work,38,39 the S-matrix elements are calculated as a Fourier
transform of the Chebyshev correlation functions:

wherekf ) x2µ0(E-Ef). To avoid divergence, it is necessary
to normalize both energy and its corresponding operator by
upper and lower spectral bounds (Hmax and Hmin) of the
Hamiltonian:

with H( ) (Hmax ( Hmin)/2.
The correlation function in eq 15 is the overlap between the

final internal state eigenfunction (|æf〉) and the Chebyshev wave
packet (|ψk〉 ) Tk|ψ0〉) at an asymptotic intermolecular distance
(r0

f): Ck ) 〈φf|ψk (r0 ) r0
f)〉. Noting that the Chebyshev

polynomial is a cosine-type propagator [Tk(Ĥnorm) ) coskΘ̂],65

this expression bears strong resemblance to the time correlation
formulism advanced by Tannor and Weeks.58 Like the time-
dependent method,66 the Chebyshev approach is energy-
global: a single propagation with the initial wave packet|øi〉
produces a column of the S-matrix at all desired energies,
provided the corresponding value ofai(E) is not very small.

In practice, the propagation of the Chebyshev wave packet
|ψk〉 is carried out with asymptotic damping to enforce the
outgoing wave boundary condition:62,63

with |ψ0〉 ) |øi〉 and |ψ1〉 ) DĤnorm|ψ0〉. The coordinate-
dependent damping function (D) is related to an energy-
dependent negative imaginary potential and should be chosen
to damp the wave packets smoothly at the edges of grid. As in
our earlier work,38,39 a Gaussian shaped damping function in
the intermolecular coordinate is used atr0 > r0

d: D ) e-γ(r0-r0
d)2.

An advantage of the Chebyshev propagation is that it can be
realized efficiently and accurately by a three-term recursion (eq
17), which involves mainly matrix-vector multiplication. In

comparison, the time propagator cannot be evaluated directly
and approximations are inevitable.67 In addition, the Chebyshev
wave packet can be propagated exclusively in real arithmetic
provided the Hamiltonian is real-symmetric and the initial wave
packet is real. In contrast to the necessarily complex wave packet
in time propagation, this is sometimes referred as a “real wave
packet” propagation.68

C. Cross-Sections and Rate Constants.For givenΩ, p, and
x, the state-resolved integral cross-section for the transition from
an initial stateV1j1V2j2j12 to a final stateV1′j1′V2′j2′j12′ is given
by

where kV1j1V2j2 ) [2µ0(E - EV1j1V2j2)]1/2. Depending on the
existence of exchange symmetry,ℵ equals to (1+ δV1V2δj1j2)(1
+ δV1′V2′δj1′j2′) or 1. PV1′j1′V2′j2′j12′rV1j1V2j2j12

JΩpx denotes the transition
probability for a givenJ, Ω, p, andx and is expressed in terms
of the S-matrix element:

We note that in the above equations the initial or final rotational
state is labeled in terms of coupled angular basis with the index
j1j2j12 in which |j1 - j2| e j12 e j1 + j2. It can be readily
transformed to the uncoupled angular basis representation used
in propagation.

Finally, the state-resolved thermal rate constant is obtained
by a Boltzmann average of the corresponding integral cross-
section over the collision energy (Ec ) E - EV1j1V2j2):

whereT is temperature andkB is the Boltzmann constant.
Usually experimental measurements provide more averaged

quantities, for example, cross-sections or rate constants corre-
sponding to theV1′j1′V2′j2′ r V1j1V2j2 transition without the
resolution ofΩpx. These quantities can easily be obtained by
averaging over all allowed values ofΩpxj12 and summing all
allowed j12′. Taking the integral cross-section in eq 18 as an
example (similarly for the rate constant in eq 20), the averaged
quantity is given as

wherew+ ) 2/3 andw- ) 1/3 for collisions betweeno-H2, and
w+ ) 1 andw- ) 0 for collisions betweenp-H2.24 In other
cases where two diatomic molecules are distinguishable, e.g.,
collisions betweenp- ando-H2, the sum overx collapses.

III. Results

For the collision betweenp-H2 with the lowest rotational
quantum numbers (j1,2 ) 0), some simplifications are possible

Sf ri(E) ) i
2πai(E)af*(E)

〈øf|G+(E)|øi〉 (14)

Sf ri(E) )

x 2kf

πµ0

e-ikfr0
f

2H-x1 - Enorm
2 ai(E)

∑
k)0

(2 - δk,0)e
-ikarccos(Enorm)Ck

(15)

Enorm ) (E - H+)/H- Ĥnorm ) (Ĥ - H+)/H- (16)

|ψk+1〉 ) D(2Ĥnorm|ψk〉 - D|ψk-1〉) (17)

σV1′j1′V2′j2′j12′rV1j1V2j2j12

Ωpx (E))
πℵ

kV1j1V2j2

2
∑
JgΩ

×

(2J + 1)PV1′j1′V2′j2′j12′rV1j1V2j2j12

JΩpx (E)

) ∑
JgΩ

σV1′j1′V2′j2′j12′rV1j1V2j2j12

Ωpx (J,E)

(18)

PV1′j1′V2′j2′j12′rV1j1V2j2j12

JΩpx (E) ) |δV1V1′δj1j1′δV2V2′δj2j2′ -

SV1′j1′V2′j2′j12′rV1j1V2j2j12

JΩpx (E)|2 (19)

kV1′j1′V2′j2′j12′rV1j1V2j2j12

Ωpx (T) ) 1
kBT( 8

πµ0kBT)1/2 ×

∫0

∞
σV1′j1′V2′j2′j12′rV1j1V2j2j12

Ωpx (Ec)e
-Ec/kBTEc dEc (20)

σV1′j1′V2′j2′rV1j1V2j2
(E) )

1

(2j1 + 1)(2j2 + 1)
∑

Ωpxj12j12′
wxσ V1′j1′V2′j2′j12′rV1j1V2j2j12

Ωpx (21)
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as demonstrated in our earlier work.38,39 The most significant
one is that all theΩ * 0 components vanish even forJ > 0.
However, when the collision involveso-H2, whose lowest
rotational state isj ) 1, such simplifications do not exist and
the calculation is much more demanding. For theortho-ortho
collision with j1 ) j2 ) 1, for example, there are three possible
values ofj12 ()0, 1, 2). For eachj12, there are multiple allowed
channels labeled byΩ ) 0, ..., j12. Therefore, propagation of
multiple initial wave packets corresponding to differentj12 and
Ω is required. For theortho-para collision, the number of
propagations needed is less than that of theortho-ortho
collision, but the exchange symmetry is lost. We note that there
are two cases for the collision betweenp- and o-H2: The
vibrationally excitedo-H2 can be relaxed by the collision with
the ground-statep-H2 and vice versa. We differentiate these two
cases asortho-para for the former andpara-ortho for the
latter.

Following Gray and Balint-Kurti,68 we used in our calcula-
tions a real initial wave packet:|øi〉 ) Ne-[(r0-r0

i)/σ]2/2 coskir0|æi〉,
where|æi〉 represents the internal state eigenfunction andN is
the normalization constant. The outgoing part of the initial wave
packet does not impact the calculation as long as it is effectively
eliminated by the damping. The initial wave packets were
launched atr0

i ) 12.0 bohr with a Gaussian widthσ ) 0.3
bohr and central kinetic energy of 0.5 eV. The final state
projection was made atr0

f ) 12.0 bohr. The onset of the
damping was placed atr0

d ) 16.0 bohr withγ ) 0.01 bohr-2.
To test the convergence, several calculations with different

grid/basis sizes and grid ranges have been performed. The
numerical parameters used to obtain the results reported in this
work are as follows. For the scattering coordinate (r0), 128
equally spaced grid points extending from 2.0 to 21.0 bohr were
used. For each of the two vibrational coordinatesri (i ) 1, 2),
four PODVR points were found to be sufficient. The rovibra-
tional eigenvalues and eigenfunctions of the free H2 molecule
were calculated variationally and represented in the PODVR (j
) 0) grid. For the angular FBR, we have usedj1max ) j2max )
7 for theortho-ortho collision andj1max ) 7, j2max ) 8 for the
ortho-paracollision. Onlyj ) odd (even) foro-H2 (p-H2) were
included in the angular basis. For the angular grid,nθ1 ) nθ2 )
nφ ) 12 points were used for the three angular coordinates.
The PES was cut off at 5.4 eV to minimize the spectral range
of the Hamiltonian. Typically, 3000 steps of Chebyshev
propagation were found to be sufficient.

Because the existing experimental data are concerned with
vibrational relaxation [(V1 ) 1,V2 ) 0) f (V1′ ) 0, V2′ ) 0)],
only the S-matrix elements in this final vibrational channel were
calculated. Thus, the results reported below are exclusively
related to the vibrational relaxation in the collision.

To obtain accurate integral cross-sections, one has to calculate
numerous partial wave contributions (see eq 18). TheJ
dependence of the final-state-summed partial cross-section
Σf σfri(J, E) is displayed in the upper panel of Figure 1 for the
transitions fromj1 ) j2 ) j12 ) 1 with Ω ) 1, p ) +1, andx
) +1 at two collision energies. Here,f refers to the rotational
states in theV1′ ) V2′ ) 0 channel. Typically, the partial wave
contribution rises initially and decays to zero at very largeJ.
The number of partial waves needed to converge the cross-
section increases with the collision energy. At the collision
energy of 1.6 eV, for example, about 70 partial waves are
necessary. It can also be noted from the figure that the
dependence of the cross-section on the total angular momentum
quantum number (J) is quite smooth. Consequently, one can
approximate theJ dependence of the partial cross-section by

interpolation in theJ space, which avoids the calculation of all
the partial wave contributions. Indeed, this scheme works quite
well as demonstrated by Figure 1, in which the curves represent
results obtained by cubic spline interpolation with∆J ) 6. As
shown in the upper panel, the explicitly computed values
(pluses) not included in the interpolation fell nicely on top of
the interpolated curves. In the lower panel, the dependence of
the cross-section on the collision energy is shown forJ ) 4
and 33. Again, the interpolated curves coincide with the
explicitly computed cross-sections (pluses) very well.

Some special treatments were needed in interpolating the
results forΩ ) 0 because the smoothJ dependence atΩ * 0
no longer holds. As shown in Figure 2, the final-state-summed
partial cross-sections for transitions fromj1 ) j2 ) 1, j12 ) 0,
Ω ) 0 strongly oscillate. For even exchange symmetry (x )
+1), contributions from evenJ dominate. Similarly, the oddJ
components are much larger for odd exchange symmetry (x )

Figure 1. Comparison of partial cross-sections from interpolation and
explicit calculations. The cross-sections are for the collision between
two o-H2 from the initial statej1 ) j2 ) j12 ) 1, Ω ) 1, p ) +1, x )
+1 to all the final rotational states in the vibrationally relaxed channel.
TheJ- andE-dependent curves are obtained by cubic spline interpola-
tion with ∆J ) 6, while (+) represent the explicit results not included
in the interpolation.

Figure 2. Final-state-summed partial cross-section for transitions from
the initial statej1 ) j2 ) 1, j12 ) 0, Ω ) 0. The even and odd exchange
symmetry results are strongly oscillatory.
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-1). Our approach to this special situation is to interpolate
separately forJ ) even block and forJ ) odd block.
Interestingly, nearly identical interpolation curves are obtained
for theJ ) even block in even exchange symmetry and for the
J ) odd block in odd exchange symmetry, and vice versa. This
can be clearly seen in Figure 2.

Unlike thepara-paracollision where only the even exchange
symmetry contributes, both the even and odd exchange sym-
metries should be included in theortho-ortho collision, cf. eq
21. However, one needs to compute the results of only one
symmetry as the integral cross-section is independent ofx even
when the partial cross-section is drastically different in the two
exchange symmetry species as shown in Figure 2. This is shown
in Figure 3, where the final-state-summed integral cross-sections
for j1 ) j2 ) 1, j12 ) 0, Ω ) 0 are plotted for both the even
and odd exchange symmetries. The phenomenon has previously
been noted by Zarur and Rabitz23 in the study of rotationally
inelastic H2 + H2 collisions, and also by Huo and Green69 in
the study of the N2 + N2 collision. We are not aware of any
mathematical proof of this numerical observation.

In Figure 4, the calculated thermal rate constants for the
vibrational relaxation [(V1 ) 1,V2 ) 0) f (V1′ ) 0, V2′ ) 0)]
are displayed for theortho-ortho (koo), ortho-para (kop), para-
ortho (kpo), andpara-para (kpp) collisions. This figure repre-
sents the major results of this work. The calculated rate constants
are initial-state-resolved (V1 ) 1, j1,V2 ) 0, j2, with average
over j12) and summed over the rotational states in theV1′ ) V2′
) 0 channel:

The rate constants are displayed in two panels to better compare
with the available experimental data,6-8 which are also plotted
in the figure. At the high temperature range, experimental rate
constants are available only for collisions between normal H2

(knn), which is some kind of combination ofkoo, kop, kpo, and
kpp.

Qualitatively, the calculated rate constant reproduces the
overall trend of the experimental measurements spanning over
5 orders of magnitude. Quantitatively, however, the agreement
is less promising, particularly at low temperatures. The calcu-
lated rate constant overestimates the experimental data at low
temperatures by about a factor of 3∼10 and underestimates them
at high temperatures by about a factor of 2∼3. The underesti-
mation of the experimental data at high temperatures is
reasonable, given the fact that only the lowest initial rotational

states were considered in our calculations. Previous stud-
ies17,31,37,39 have indicated significant rate enhancement by
rotational excitation of the collision partners. Hence, a better
agreement between theory and experiment is expected at high
temperatures after the Boltzmann averaging in the theoretical
calculations. On the other hand, the Boltzmann averaging will
exacerbate the discrepancy between theory and experiment at
low temperatures.

The above conclusions indicate that the inclusion ofo-H2

does not change qualitatively the picture obtained in our earlier
work on thepara-para collision.39 Our calculations are also
consistent with the low-temperature results of Pogrebnya and
Clary,37 who used a rather different (CC) numerical method but
the same PES. The only dynamical approximation, namely, the
CS approximation, is unlikely to be responsible for such large
discrepancies with experimental data. One possible source of
error is the PES. Indeed, Pogrebnya and Clary37 have attributed
the theory-experiment discrepancies to the large anisotropy of
the BMKP PES, which stems from the pairwise contributions
in the potential energy function. A modified version of the
BMKP PES with weaker anisotropy was proposed by these
authors and a better agreement was obtained. Although the large
anisotropy pointed out by these authors probably represents a
genuine artifact of the BMKP PES, their modification was a
little superficial. It might be worthwhile to add more ab initio
points and perform a better fit in order to confirm the
speculation.

The theoretical results show that theortho-ortho rate constant
is larger than thepara-para one and the difference between
them decreases with increasing temperature. Although this
feature is in qualitative agreement with experimental observa-

Figure 3. Final-state-summed total cross-section for transitions from
the initial statej1 ) j2 ) 1, j12 ) 0, Ω ) 0. The even and odd exchange
symmetry results are nearly identical.

kV1′V2′rV1j1V2j2
(E) )

1

(2j1 + 1)(2j2 + 1)
∑

Ωpxj12j12′,j1′,j2′
wxkV1′j1′V2′j2′j12′rV1j1V2j2j12

Ωpx (22)

Figure 4. Temperature dependence of calculated thermal rate constants
(solid lines) for the vibrational relaxation ofpara-para, ortho-para,
para-ortho, andortho-ortho H2 collisions at low (lower panel) and
high (upper panel) temperatures. The open (O)8 and solid circles (b)6

are experimental data for collisions between normal H2, while the
squares (0) and triangles (4) are measurements for collisions between
p-H2 and betweeno-H2, respectively.7
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tions, quantitative differences exist. For example, the gap
betweenkoo and kpp is much larger than experimental data at
most temperatures. The calculated results also show that the
ortho-ortho rate constant is always larger than all others and
the ortho-para rate constant is significantly larger than both
the para-para and para-ortho ones at temperatures below
1200 K. Thepara-para rate constant is slightly larger or equal
to the para-ortho one at this temperature range. At higher
temperatures (>1200 K), thepara-para rate constant exceeds
the other two. Unfortunately, experimental results of rate
constants for theortho-paraandpara-orthocollisions are not
available.

In the experimental work of Audibert et al.,7 a relationship
between different rate constants is determined within(25%,
koo + kpp ) kop + kpo. From an analysis based on the calculated
rate constants, we found the relationshipkoo + kpp ) 1.32(kop

+ kpo), holds very well over a broad range of temperatures
(0∼3500 K). This theoretically determined relationship is in
reasonable accord with the experimental observation.

IV. Conclusions

In this work, we reported accurate full-dimensional quantum
dynamical calculations of vibrational relaxation induced by
collisions between hydrogen molecules. A time-independent
Chebyshev wave packet method and a mixed grid/basis repre-
sentation were used to compute the S-matrix elements. The
approach used in this work has more favorable scaling laws
than the traditional CC method; thus it should find more
applications in other systems. State-resolved rate constants for
both thepara-para, ortho-ortho, andortho-para/para-ortho
collisions were obtained up to a high temperature (3500 K) by
use of the ab initio based BMKP PES. Calculated rate constants
were compared with available experimental measurements and
previous theoretical results.

The calculated rate constants reproduce qualitatively the
experimental trend. However, quantitative comparison, particu-
larly at low temperatures, indicates that the calculated rate
constants overestimate the experimental data by as much as an
order of magnitude. Such disagreement was also reported
recently by Pogrebnya and Clary37 using the same PES. The
consistency of the two theoretical calculations rules out the
possibility of inaccuracy in dynamical calculations as a possible
source of error. Further work on the PES and on the experi-
mental measurements is needed to identify the source of such
disagreement.
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